Eon Hadean dan Arkean Sejarah_Bumi

Rencana–rencana utama: Hadean dan Arkean
konsep artis daripada eon Hadean Bumi, apabila ia adalah lebih panas dan tidak ramah kepada semua bentuk kehidupan.

Eon pertama dalam sejarah bumi, Hadean, bermula dengan pembentukan bumi dan diikuti oleh eon Arkean pada 3.8 Ga.[2]:145 Batu-batu tertua yang terdapat pada tarikh Bumi kira-kira 4.0 Ga, dan kristal zirkon tertua tertua dalam batuan hingga kira-kira 4.4 Ga,[30][31][32] tidak lama selepas pembentukan kerak Bumi dan Bumi itu sendiri. Hipotesis kesan gergasi untuk pembentukan Bulan menyatakan bahawa sejurus selepas pembentukan kerak awal, proto-Bumi telah dipengaruhi oleh protoplanet yang lebih kecil, yang mengeluarkan sebahagian dari mantel dan kerak ke angkasa dan menciptakan Bulan.[33][34][35]

Dari kiraan kawah ke atas badan angkasa lain, disimpulkan bahawa tempoh impak meteorit yang sengit, dipanggil Pengeboman Berat Akhir, bermula kira-kira 4.1 Ga, dan menyimpulkan sekitar 3.8 Ga, pada akhir Hadean.[36] Di samping itu, gunung berapi teruk akibat aliran haba yang besar dan kecerunan geoterma.[37] Walau bagaimanapun, kristal zirkon detrital bertarikh 4.4 Ga menunjukkan bukti telah mengalami sentuhan dengan air cair, menunjukkan bahawa Bumi sudah mempunyai lautan atau lautan pada masa itu.[30]

Pada permulaan Arkean, Bumi telah menyejuk dengan ketara. Bentuk kehidupan sekarang tidak dapat bertahan di permukaan Bumi, kerana atmosfera Arkean kekurangan oksigen dan tidak mempunyai lapisan ozon untuk menghalang sinar ultraungu. Walau bagaimanapun, ia dipercayai bahawa kehidupan primordial mula berkembang dengan Arkean awal, dengan fosil calon bertarikh sekitar 3.5 Ga.[38] Sesetengah saintis juga membuat spekulasi bahawa kehidupan boleh bermula pada Hadean awal, sejauh 4.4 Ga, yang dapat menjejaskan tempoh Pengeboman Berat Masa yang mungkin di lubang hidroterma di bawah permukaan bumi.[39]

Pembentukan Bulan

Rencana–rencana utama: Bulan, Asal usul Bulan, dan Hipotesis hentaman besar
Gambaran artis mengenai perlanggaran besar yang mungkin membentuk Bulan

Satelit semula jadi bumi, Bulan, adalah lebih besar daripada satelit lain dalam sistem suria.[nb 1] Semasa program Apollo, batu-batu dari permukaan Bulan dibawa ke Bumi. Pentarikhan radiometrik batuan ini menunjukkan bahawa Bulan adalah 4.53 ± 0.01 bilion tahun,[42] dibentuk sekurang-kurangnya 30 juta tahun selepas sistem suria.[43] Bukti baru mencadangkan Bulan yang terbentuk kemudian, 4.48 ± 0.02 Ga, atau 70-110 juta tahun selepas permulaan Sistem Suria.[44]

Teori-teori untuk pembentukan Bulan mesti menjelaskan pembentukan akhir serta fakta-fakta berikut. Pertama, Bulan mempunyai ketumpatan yang rendah (3.3 kali daripada air, berbanding dengan 5.5 untuk bumi)[45]) dan teras logam kecil. Kedua, hampir tidak ada air atau pemeruwapan lain di bulan. Ketiga, Bumi dan Bulan mempunyai tanda tangan isotop oksigen yang sama (banyaknya isotop oksigen). Daripada teori-teori yang dicadangkan untuk menjelaskan fenomena-fenomena ini, satu diterima secara meluas: Hipotesis kesan gergasi mencadangkan bahawa Bulan berasal dari sebuah badan yang ukuran Marikh (kadang kala dinamai Theia[43]) melanda proto-Bumi yang melontarkan pukulan.[1]:256[46][47]

Perlanggaran ini mengeluarkan kira-kira 100 juta kali lebih banyak tenaga daripada kesan Chicxulub yang lebih baru yang dipercayai menyebabkan kepupusan dinosaur. Ia sudah cukup untuk menguap beberapa lapisan luar Bumi dan mencairkan kedua-dua badan.[46][1]:256 Sebahagian daripada bahan mantel dikeluarkan ke orbit sekitar Bumi. Hipotesis kesan gergasi meramalkan bahawa Bulan telah kehabisan bahan metalik,[48] menjelaskan komposisi abnormalnya.[49] Ejekta di orbit di sekeliling Bumi dapat memendekkan satu badan dalam masa beberapa minggu. Di bawah pengaruh graviti sendiri, bahan yang dikeluarkan menjadi badan yang lebih bulat: Bulan.[50]

Benua pertama

Peta geologi Amerika Utara, dikodkan mengikut usia. Merah dan merah jambu menunjukkan batu dari Arkean.

Perolakan Mantel, proses yang mendorong tektonik plat, adalah hasil daripada aliran haba dari dalaman Bumi ke permukaan Bumi.[51]:2 Ia melibatkan penciptaan plat tektonik tegar di rabung tengah lautan. Plat ini dimusnahkan oleh subduksi ke dalam mantel di zon subduksi. Semasa awal Arkean awal (kira-kira 3.0 Ga) mantel itu lebih panas dari hari ini, mungkin sekitar 1,600 ° C (2,910 ° F)[52]:82 jadi perolakan dalam mantel adalah lebih cepat. Walaupun proses yang serupa dengan tektonik plat sekarang berlaku, ini akan menjadi lebih cepat juga. Ada kemungkinan bahawa semasa Hadean dan Arkean, zon subduksi lebih umum, dan oleh itu plat tektonik lebih kecil.[1]:258[53]

Kerak awal, terbentuk apabila permukaan Bumi pertama dipadatkan, benar-benar hilang dari kombinasi plat tektonik Hadean yang cepat ini dan kesan yang kuat dari Pengeboman Berat Akhir. Walau bagaimanapun, ia dianggap bahawa ia adalah basaltik dalam komposisi, seperti kerak lautan hari ini, kerana pembezaan sedikit kerak telah berlaku.[1]:258 Potongan-potongan pertama kerak benua yang lebih besar, yang merupakan hasil pembezaan unsur-unsur yang lebih ringan semasa peleburan separa di kerak bawah, muncul pada akhir Hadean, kira-kira 4.0 Ga. Apa yang tersisa dari benua-benua kecil yang pertama ini disebut sebagai kraton. Potongan-potongan akhir kerak awal Hadean dan Arkean membentuk teras di mana benua hari ini berkembang.[54]

Batu-batu tertua di Bumi terdapat di kraton Amerika Utara di Kanada. Mereka adalah tonalit dari kira-kira 4.0 Ga Mereka menunjukkan jejak metamorfisme dengan suhu tinggi, tetapi juga bijirin sedimen yang telah dibulatkan oleh hakisan semasa pengangkutan melalui air, menunjukkan bahawa sungai-sungai dan lautan wujud.[55] Kraton terdiri terutamanya daripada dua jenis terantian bergantian. Yang pertama adalah tali pinggang batu hijau yang dipanggil, yang terdiri daripada batu endapan bermata rendah metamorfosa. "Batu hijau" ini mirip dengan endapan yang terdapat pada parit lautan, di atas zon subduksi. Atas sebab ini, batu-batu hijau kadang-kadang dilihat sebagai bukti untuk subduksi semasa Arkean. Jenis kedua adalah kompleks batu magmatic felsik. Batu-batu ini kebanyakannya tonalit, trondhjemit atau granodiorit, jenis batu yang serupa dalam komposisi ke granit (oleh itu terran tersebut dipanggil TTG-terranes). Kompleks TTG dilihat sebagai kerangka kerak benua pertama yang dibentuk oleh lebur separa dalam basalt.[56]:Bab 5

Lautan dan atmosfera

Rencana utama: Asal usul air di Bumi
Grafik menunjukkan jangkauan tekanan oksigen atmosfera yang dianggarkan melalui masa geologi [57]

Bumi sering digambarkan sebagai mempunyai tiga atmosfera. Atmosfera pertama, yang ditangkap dari nebula suria, terdiri daripada cahaya (atmofil) unsur-unsur dari nebula suria, kebanyakannya hidrogen dan helium. Gabungan angin suria dan haba bumi akan mengusir atmosfera ini, akibatnya atmosfera kini habis unsur-unsur ini berbanding dengan banyak kosmik.[58] Selepas hentaman yang mencipta bulan, Bumi cair mengeluarkan gas yang tidak menentu; dan kemudian lebih banyak gas dikeluarkan oleh gunung berapi, menyiapkan atmosfera kedua yang kaya dengan gas rumah hijau tetapi miskin dalam oksigen.[1]:256 Akhir sekali, atmosfera ketiga, kaya dengan oksigen, muncul apabila bakteria mula menghasilkan oksigen kira-kira 2.8 juta tahun.[59]:83–84,116–117

Dalam model awal untuk pembentukan atmosfera dan lautan, atmosfera kedua dibentuk dengan mengatasi pemeruwapan dari bahagian bumi. Sekarang ia dianggap mungkin bahawa banyak pemeruwapan telah dihantar semasa pertambahan oleh proses yang dikenali sebagai nyahgas impak di mana badan-badan masuk menguap pada kesan. Oleh itu, lautan dan atmosfera mula terbentuk walaupun Bumi terbentuk. Suasana baru mungkin mengandungi wap air, karbon dioksida, nitrogen, dan jumlah gas lain yang lebih kecil.[60][61]

Planetesimal pada jarak 1 unit astronomi (AU), jarak Bumi dari Matahari, mungkin tidak menyumbang sebarang air ke Bumi kerana nebula suria terlalu panas untuk membentuk ais dan penghidratan batu oleh wap air akan telah mengambil masa terlalu lama.[60][62] Air itu mesti dibekalkan oleh meteorit dari sabuk asteroid luar dan beberapa embrio planet besar dari luar 2.5 AU[60][63] Comet juga mungkin menyumbang. Walaupun komet kebanyakan hari ini di orbit jauh dari Matahari daripada Neptun, simulasi komputer menunjukkan bahawa mereka pada asalnya jauh lebih biasa di bahagian dalam sistem suria.[55]:130–132

Apabila bumi menyejuk, awan terbentuk. Hujan mencipta lautan. Bukti terkini mencadangkan lautan mungkin mula terbentuk seawal 4.4 & nbsp; Ga.[30] Dengan permulaan eon Arkean, mereka sudah menutupi sebahagian besar Bumi. Pembentukan awal ini sukar untuk dijelaskan kerana masalah yang dikenali sebagai paradoks Matahari muda samar. Bintang-bintang diketahui semakin cerah ketika mereka berusia, dan pada masa pembentukannya Matahari akan memancarkan hanya 70% kekuatannya sekarang. Oleh itu, Matahari telah menjadi 30% lebih cerah dalam 4.5 bilion tahun lalu.[64] Banyak model menunjukkan bahawa Bumi akan diliputi dalam ais.[65][60] Penyelesaian yang mungkin adalah terdapat karbon dioksida dan metana yang mencukupi untuk menghasilkan kesan rumah hijau. Karbon dioksida akan dihasilkan oleh gunung berapi dan metana oleh mikrob awal. Satu lagi gas rumah hijau, amonia, akan dikeluarkan oleh gunung berapi tetapi cepat dimusnahkan oleh sinar ultraungu.[59]:83

Asal-usul kehidupan

Rencana–rencana utama: Abiogenesis, Evolusi, dan Sejarah evolusi kehidupan

Salah satu sebab yang menarik minat atmosfera awal dan lautan ialah mereka membentuk keadaan di mana kehidupan pertama timbul. Terdapat banyak model, tetapi sedikit persetujuan, tentang bagaimana kehidupan muncul daripada bahan kimia bukan hidup; sistem kimia yang dicipta dalam kejatuhan makmal dengan kekurangan kompleksiti minimum untuk organisma hidup.[66][67]

Langkah pertama dalam kemunculan hidup mungkin adalah tindak balas kimia yang menghasilkan banyak sebatian organik yang mudah, termasuk nukleobase dan asid amino, yang merupakan blok bangunan kehidupan. Eksperimen pada tahun 1953 oleh Stanley Miller dan Harold Urey menunjukkan bahawa molekul sedemikian boleh terbentuk dalam atmosfera air, metana, amonia dan hidrogen dengan bantuan percikan api untuk meniru kesan kilat.[68] Walaupun komposisi atmosfera mungkin berbeza daripada yang digunakan oleh Miller dan Urey, kemudian eksperimen dengan komposisi lebih realistik juga berjaya mensintesis molekul organik.[69] Simulasi komputer menunjukkan bahawa molekul organik luar angkasa boleh dibentuk dalam cakera protoplanet sebelum pembentukan Bumi.[70]

Kerumitan tambahan boleh dicapai dari sekurang-kurangnya tiga titik permulaan yang mungkin: replikasi diri, keupayaan organisma untuk menghasilkan keturunan yang serupa dengan dirinya sendiri; metabolisme, keupayaan untuk memberi makan dan membaikinya sendiri; dan membran sel luaran, yang membolehkan makanan memasuki dan membuang produk untuk meninggalkannya, tetapi tidak termasuk bahan yang tidak diingini.[71]

Replikasi pertama: Dunia RNA

Rencana utama: Dunia RNA

Bahkan ahli paling mudah dari tiga domain kehidupan moden menggunakan DNA untuk merekodkan "resipi" mereka dan pelbagai kompleks molekul RNA dan protein untuk "membaca" arahan ini dan menggunakannya untuk pertumbuhan, penyelenggaraan, dan replikasi diri.

Penemuan bahawa sejenis molekul RNA yang dipanggil ribozim boleh memangkin kedua-dua replikasi sendiri dan pembinaan protein menyebabkan hipotesis bahawa bentuk-bentuk kehidupan terdahulu didasarkan sepenuhnya pada RNA.[72] Mereka boleh membentuk dunia RNA di mana terdapat individu tetapi tidak ada spesies, seperti mutasi dan pemindahan gen mendatar yang bermaksud bahawa keturunan dalam setiap generasi agak berkemungkinan mempunyai genom yang berbeza daripada yang dimulakan oleh ibu bapa mereka.[73] RNA kemudiannya telah digantikan oleh DNA, yang lebih stabil dan oleh itu dapat membina genom yang lebih panjang, memperluas jangkauan keupayaan sesuatu organisma tunggal.[74] Ribosim kekal sebagai komponen utama ribosom, "kilang protein" sel-sel moden.[75]

Walaupun molekul RNA yang ringkas dan mereplikasi diri telah dihasilkan secara buatan di makmal,[76] keraguan telah dibangkitkan mengenai sama ada sintesis bukan biologi semulajadi RNA adalah mungkin.[77][78][79] Ribozim paling awal mungkin terbentuk daripada asid nukleik seperti PNA, TNA atau GNA, telah digantikan kemudian oleh RNA.[80][81] Replikator pra-RNA lain telah dipasang, termasuk kristal[82]:150 dan bahkan sistem kuantum.[83]

Pada tahun 2003, dicadangkan bahawa logam sulfida berliang mendahului akan membantu sintesis RNA pada kira-kira 100 ° C (212 ° F) dan tekanan bawah laut berhampiran lubang hidroterma. Dalam hipotesis ini, membran lipid akan menjadi komponen sel utama yang terakhir untuk muncul dan sehingga mereka melakukan sel-sel proto akan terkurung pada liang-liang.[84]

Metabolisme pertama: Dunia besi-belerang

Replikator dalam hampir semua kehidupan yang diketahui adalah asid deoksiribonukleik. DNA jauh lebih rumit daripada replik asal dan sistem replikasinya sangat rumit.

Satu lagi hipotesis lama ialah kehidupan pertama terdiri daripada molekul protein. Asid amino, blok bangunan protein, mudah disintesis dalam keadaan prebiotik yang munasabah, seperti peptida kecil (polimer asid amino) yang menjadikan pemangkin yang baik.[85]:295–297 Satu siri eksperimen bermula pada tahun 1997 menunjukkan bahawa asid amino dan peptida boleh terbentuk dengan adanya karbon monoksida dan hidrogen sulfida dengan besi sulfida dan nikel sulfida sebagai pemangkin. Kebanyakan langkah dalam pemasangan mereka memerlukan suhu kira-kira 100 ° C (212 ° F) dan tekanan sederhana, walaupun satu tahap diperlukan 250 ° C (482 ° F) dan tekanan yang sama dengan yang terdapat di bawah 7 kilometer (4.3 mi) batu. Oleh itu, sintesis protein yang dapat mengekalkan diri sendiri boleh berlaku berhampiran lubang hidroterma.[86]

Kesukaran dengan senario metabolisme pertama adalah mencari jalan bagi organisma untuk berkembang. Tanpa keupayaan untuk meniru sebagai individu, agregat molekul akan mempunyai "genom komposisi" (bilangan spesies molekul dalam agregat) sebagai sasaran pemilihan semula jadi. Walau bagaimanapun, model baru-baru ini menunjukkan bahawa sistem sedemikian tidak dapat berkembang sebagai tindak balas kepada pemilihan semula jadi.[87]

Membran pertama: Dunia lipid

Telah dicadangkan bahawa "gelembung" berlipat ganda daripada lipid seperti yang membentuk membran luar sel mungkin merupakan langkah pertama yang penting.[88] Eksperimen yang menyimulasikan keadaan awal Bumi telah melaporkan pembentukan lipid, dan ini boleh membentuk liposom secara spontan, "buih" berdinding dua, dan kemudian menghasilkan semula diri mereka. Walaupun mereka bukan pengangkut maklumat secara intrinsik sebagai asid nukleik, mereka akan tertakluk kepada pemilihan semula jadi untuk umur panjang dan pembiakan. Asid nukleik seperti RNA mungkin terbentuk dengan lebih mudah di dalam liposom berbanding di luar.[89]

Teori Tanah Liat

Sesetengah tanah liat, terutamanya montmorillonit, mempunyai ciri-ciri yang menjadikan mereka pemecut yang munasabah untuk kemunculan dunia RNA: mereka tumbuh dengan replikasi diri dari corak kristal mereka, tertakluk kepada analog pemilihan semula jadi (sebagai "spesies" tanah liat yang tumbuh paling pesat dalam persekitaran tertentu pesat menjadi dominan), dan boleh memangkinkan pembentukan molekul RNA.[90] Walaupun idea ini tidak menjadi konsensus saintifik, ia masih mempunyai penyokong aktif.[91]:150–158[82]

Keratan rentas melalui liposom 

Penyelidikan pada tahun 2003 melaporkan bahawa montmorillonite juga dapat mempercepat penukaran asid lemak menjadi "buih", dan gelembung dapat merangkum RNA yang dilekatkan pada tanah liat. Gelembung boleh tumbuh dengan menyerap lipid tambahan dan membahagikan. Pembentukan sel terawal mungkin dibantu oleh proses yang serupa.[92]

Hipotesis yang sama memperlihatkan tanah liat yang kaya dengan besi sebagai reproduksi nukleotida, lipid dan asid amino.[93]

Nenek moyang terakhir

Adalah dipercayai bahawa kepelbagaian protosel ini, hanya satu baris yang terselamat. Bukti filogenetik semasa menunjukkan bahawa leluhur sejagat terakhir (LUA) hidup pada awal eon Arkean, mungkin 3.5 Ga atau lebih awal.[94][95] Sel LUA ini adalah nenek moyang semua kehidupan di Bumi hari ini. Ia mungkin prokariot, mempunyai membran sel dan mungkin ribosom, tetapi tidak mempunyai nukleus atau organel terikat membran seperti mitokondria atau kloroplas. Seperti sel-sel moden, ia menggunakan DNA sebagai kod genetiknya, RNA untuk pemindahan maklumat dan sintesis protein, dan enzim untuk memangkinkan tindak balas. Sesetengah saintis percaya bahawa bukan satu-satunya organisma yang menjadi nenek moyang biasa sejagat, terdapat populasi organisma yang menukar gen oleh pemindahan gen sisi.[94]

Rujukan

WikiPedia: Sejarah_Bumi http://www.funpecrp.com.br/gmr/year2003/vol4-2//pd... http://www.funpecrp.com.br/gmr/year2003/vol4-2/gmr... http://www.bbc.com/earth/bespoke/story/20150123-ea... http://apnews.excite.com/article/20131113/DAA1VSC0... http://apnews.excite.com/article/20151019/us-sci--... http://historystack.com/30_Major_Events_in_History... http://www.johnkyrk.com/evolution.html http://www.nature.com/nature/journal/v433/n7025/fu... http://www.nature.com/nature/journal/v437/n7060/fu... http://www.sciencedirect.com/science/article/pii/S...